Publications

Here's a high-level selection of academic publications; check out also the topic-specific collections on multimodality, sparse mixtures of experts & transfer learning, medical imaging and label noise, or my Google Scholar profile.

Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts

Basil Mustafa*, Carlos Riquelme*, Joan Puigcerver*, Rodolphe Jenatton, Neil Houlsby
NeurIPS 2022 · arxiv · Google AI blog 

Large sparsely-activated models have obtained excellent performance in multiple domains.However, such models are typically trained on a single modality at a time.We present the Language-Image MoE, LIMoE, a sparse mixture of experts model capable of multimodal learning.LIMoE accepts both images and text simultaneously, while being trained using a contrastive loss.MoEs are a natural fit for a multimodal backbone, since expert layers can learn an appropriate partitioning of modalities.However, new challenges arise; in particular, training stability and balanced expert utilization, for which we propose an entropy-based regularization scheme.Across multiple scales, we demonstrate performance improvement over dense models of equivalent computational cost.LIMoE-L/16 trained comparably to CLIP-L/14 achieves 77.9% zero-shot ImageNet accuracy (vs. 76.2%), and when further scaled to H/14 (with additional data) it achieves 83.8%, approaching state-of-the-art methods which use custom per-modality backbones and pre-training schemes.We analyse the quantitative and qualitative behavior of LIMoE, and demonstrate phenomena such as differing treatment of the modalities and the emergence of modality-specific experts.

Effective scaling and a flexible task interface enable large language models to excel at many tasks. PaLI (Pathways Language and Image model) extends this approach to the joint modeling of language and vision. PaLI generates text based on visual and textual inputs, and with this interface performs many vision, language, and multimodal tasks, in many languages. To train PaLI, we make use of large pretrained encoder-decoder language models and Vision Transformers (ViTs). This allows us to capitalize on their existing capabilities and leverage the substantial cost of training them. We find that joint scaling of the vision and language components is important. Since existing Transformers for language are much larger than their vision counterparts, we train the largest ViT to date (ViT-e) to quantify the benefits from even larger-capacity vision models. To train PaLI, we create a large multilingual mix of pretraining tasks, based on a new image-text training set containing 10B images and texts in over 100 languages. PaLI achieves state-of-the-art in multiple vision and language tasks (such as captioning, visual question-answering, scene-text understanding), while retaining a simple, modular, and scalable design.

LiT: Zero-Shot Transfer with Locked-image text Tuning

Xiaohua Zhai*, Xiao Wang*, Basil Mustafa*, Andreas Steiner*, Daniel Keysers, Alexander Kolesnikov, Lucas Beyer*
CVPR2022 · arxiv · Google AI blog · demo 

This paper presents contrastive-tuning, a simple method employing contrastive training to align image and text models while still taking advantage of their pre-training. In our empirical study we find that locked pre-trained image models with unlocked text models work best. We call this instance of contrastive-tuning "Locked-image Tuning" (LiT), which just teaches a text model to read out good representations from a pre-trained image model for new tasks. A LiT model gains the capability of zero-shot transfer to new vision tasks, such as image classification or retrieval. The proposed LiT is widely applicable; it works reliably with multiple pre-training methods (supervised and unsupervised) and across diverse architectures (ResNet, Vision Transformers and MLP-Mixer) using three different image-text datasets. With the transformer-based pre-trained ViT-g/14 model, the LiT model achieves 85.2% zero-shot transfer accuracy on the ImageNet test set, and 82.5% on the challenging out-of-distribution ObjectNet test set.

Scaling Vision with Sparse Mixture of Experts

Carlos Riquelme*, Joan Puigcerver*, Basil Mustafa*, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, Neil Houlsby
NeurIPS 2021 · arxiv · Google AI blog · code 

Sparsely-gated Mixture of Experts networks (MoEs) have demonstrated excellent scalability in Natural Language Processing. In Computer Vision, however, almost all performant networks are "dense", that is, every input is processed by every parameter. We present a Vision MoE (V-MoE), a sparse version of the Vision Transformer, that is scalable and competitive with the largest dense networks. When applied to image recognition, V-MoE matches the performance of state-of-the-art networks, while requiring as little as half of the compute at inference time. Further, we propose an extension to the routing algorithm that can prioritize subsets of each input across the entire batch, leading to adaptive per-image compute. This allows V-MoE to trade-off performance and compute smoothly at test-time. Finally, we demonstrate the potential of V-MoE to scale vision models, and train a 15B parameter model that attains 90.35% on ImageNet.

Correlated input-dependent label noise in large-scale image classification

Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, Jesse Berent
CVPR 2021 (Oral) · arxiv

Large scale image classification datasets often contain noisy labels. We take a principled probabilistic approach to modelling input-dependent, also known as heteroscedastic, label noise in these datasets. We place a multivariate Normal distributed latent variable on the final hidden layer of a neural network classifier. The covariance matrix of this latent variable, models the aleatoric uncertainty due to label noise. We demonstrate that the learned covariance structure captures known sources of label noise between semantically similar and co-occurring classes. Compared to standard neural network training and other baselines, we show significantly improved accuracy on Imagenet ILSVRC 2012 79.3% (+2.6%), Imagenet-21k 47.0% (+1.1%) and JFT 64.7% (+1.6%). We set a new state-of-the-art result on WebVision 1.0 with 76.6% top-1 accuracy. These datasets range from over 1M to over 300M training examples and from 1k classes to more than 21k classes. Our method is simple to use, and we provide an implementation that is a drop-in replacement for the final fully-connected layer in a deep classifier.